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ABSTRACT

Photometric redshift (photo-z) estimates are playing an increasingly important role in extragalac-
tic astronomy and cosmology. Crucial to many photo-z applications is the accurate quantification
of photometric redshift errors and their distributions, including identification of likely catastrophic
failures in photo-z estimates. We consider several methods of estimating photo-z errors and propose
new training-set based error estimators based on spectroscopic training set data. Using data from
the Sloan Digital Sky Survey and simulations of the Dark Energy Survey as examples, we show that
this method provides a robust, relatively unbiased estimate of photo-z errors. We show that culling
objects with large, accurately estimated photo-z errors from a sample can reduce the incidence of
catastrophic photo-z failures.

Subject headings: galaxies: distances and redshifts — galaxies: photometry

1. INTRODUCTION

While spectroscopic redshifts have now been mea-
sured for over one million galaxies, in recent years
digital sky surveys have obtained multi-band imaging
for over a hundred million galaxies. Deep, wide-area
surveys planned for the next decade will increase the
number of galaxies with multi-band photometry to a
few billion. Over the last decade, substantial effort
has gone into developing photometric redshift (photo-
z) techniques, which use multi-band photometry to esti-
mate approximate galaxy redshifts (Connolly et al. 1995;
Bolzonella et al. 2000; Benitez 2000; Collister & Lahav
2004; Wadadekar 2005). For many applications in extra-
galactic astronomy and cosmology, the precision achieved
by photometric redshifts is sufficient, provided one can
accurately characterize the uncertainties in the photo-
z estimates, i.e., the photo-z errors. A number of re-
cent papers have considered the effects of photo-z er-
rors on cosmological probes including baryon acoustic
oscillation (Zhan & Knox 2006), weak lensing tomog-
raphy (Huterer et al. 2006; Ma et al. 2006), supernovae
(Huterer et al. 2004) and galaxy clusters (Huterer et al.
2004; Lima & Hu 2007).

A number of methods have been proposed to char-
acterize photometric redshift errors to date. They
can be roughly divided into two categories: methods
based on estimating statistical errors in template fit-
ting, e.g., the χ2 method and its Bayesian counter-
parts (Bolzonella et al. 2000; Benitez 2000); and meth-
ods that explicitly propagate errors in the input param-
eters, typically magnitudes or colors, through the photo-
z estimator (e.g., Brunner et al. 1999; Hsieh et al. 2005;
Collister & Lahav 2004).

The error in a photometric redshift estimate zphot is
simply the difference between the photo-z esti-
mate and the true (hereafter, spectroscopic) redshift,
∆z =zphot−zspec. In practice, the errors for the vast
majority of objects in a deep photometric sample are

unknown, since the spectroscopic redshifts are not mea-
sured. Our goal is to devise an estimator of ∆z that
has desirable statistical properties, e.g., minimum bias
and variance, based on whatever information is at hand.
Given a photo-z estimate, an error estimator should give
the range of redshifts over which the true redshift will be
found at some confidence level.

In most cases, spectroscopic redshifts are available for
a small subset of the photometric sample. Such spectro-
scopic samples are often used as training sets for empiri-
cal or machine-based learning photo-z estimators. In this
paper, we develop methods of photo-z error estimation
that are based on the use of spectroscopic training sets to
accurately characterize the error distribution. We show
that training-set based error estimators outperform other
commonly used methods when a representative training
set is available and that they are competitive even when
the training set is not fully representative of the photo-
metric sample. In cases where the magnitude errors are
not well determined, we show that the relative advan-
tages of the new training-set based methods are further
increased.

This paper is organized as follows. In §2, we describe
the data sets that we use in this work. In §3, we intro-
duce the training-set based error estimators and their
implementations, as well as their advantages and dis-
advantages. For comparison, we review the traditional
error estimators in §4 and highlight the key differences
between them and the training-set based error estima-
tors. We show in §5 that the over-all photo-z scatter and
outlier fraction can be significantly improved by culling
objects with high estimated photo-z errors, possibly lead-
ing to improved results in analyses that rely on photo-z’s.
Finally, we offer concluding remarks in §6.

2. TEST METHODS AND DATA

In order to fairly compare the qualities of various pho-
tometric redshift error estimators, we have compiled two
galaxy photometric catalogs. Each catalog consists of
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Fig. 1.— Photometric versus spectroscopic redshift for the
DES mock catalog photometric set, calculated using the Neural
Network (top panel) and Hyperz (bottom panel) methods. The
dashed and dotted curves enclose 68% and 95% of the points in
each zspec bin. In the lower right of each panel, σ is the rms
photo-z scatter averaged over all N objects in the photometric set
, σ2 = (1/N)ΣN

i=1(∆zi)2, and σ68 is the range containing 68% of
the validation set objects in the distribution of ∆z. The Hyperz
photo-z’s for the DES mock catalog are calculated with zmax set
to 2.

spectroscopic redshifts, magnitudes in several chosen fil-
ter passbands, and magnitude errors.

The first catalog is a simulated data set created to
resemble observations of the proposed Dark Energy
Survey (DES) (The Dark Energy Survey Collaboration
2005). The DES is a 5000 square degree survey in 5 opti-
cal passbands (grizY ) with a magnitude limit of i ≈ 24,
to be carried out using a new camera on the CTIO 4-
meter telescope. The goal of the survey is to measure

Fig. 2.— Photo-z versus spectroscopic redshift for the SDSS DR3
photometric set calculated using the Neural Network (top panel)
and Hyperz (bottom panel). The Hyperz photo-z’s for the SDSS
catalog are calculated with zmax set to 0.4.

the equation of state of dark energy using several tech-
niques: clusters, weak lensing, angular galaxy cluster-
ing (baryon acoustic oscillations), and supernovae. Since
DES will observe ∼ 300 million galaxies, the redshifts
must be obtained using photometric methods. The DES
optical survey will be complemented in the near-infrared
by the VISTA Hemisphere Survey, an ESO Public Sur-
vey on the VISTA 4-meter telescope that will cover the
survey area in J, H , and Ks. While the color information
provided by grizY JHKs photometry leads to improved
photo-z estimates compared to optical-only imaging, for
simplicity and purposes of illustration the mock catalog
we use here contains only griz magnitudes.

The simulated DES catalog contains 200,000 galaxies
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with z < 2 and with 20 < i < 24. The magnitude
and redshift distributions are derived from the galaxy
luminosity function measurements of Lin et al. (1999)
and Poli et al. (2003), while the galaxy SED type dis-
tribution is obtained from measurements of the HDF-
N/GOODS field (Capak et al. 2004; Wirth et al. 2004;
Cowie et al. 2004). The galaxy colors are generated using
the four Coleman et al. (1980) templates–E, Sbc, Scd,
Im–extended to the UV and NIR using synthetic tem-
plates from Bruzual & Charlot (1993). To improve the
sampling and coverage of color space, we create addi-
tional templates by interpolating between adjacent tem-
plates or by extrapolating from the E and Im templates.

The second test catalog we use is based on
the Sloan Digital Sky Survey (SDSS) Data Re-
lease 3 (Abazajian et al. 2003). Although this cat-
alog has been superceded by later data releases
(Adelman-McCarthy et al. 2007), for which we have pub-
lished a photo-z catalog (Oyaizu et al. 2007), it never-
theless provides a useful testbed for studies of photo-z
errors. This SDSS catalog contains spectroscopic red-
shifts and magnitudes in ugriz passbands for 292, 964
galaxies from the main spectroscopic sample, which is
flux-limited to r < 17.77. Because this sample is con-
fined to low redshift, z . 0.3, most of the strong features
of galaxy spectra targeted by photometric redshift esti-
mators fall within the wavelength range covered by the
filters. A notable exception is the Lyman alpha emitters
at z > 2.5. However, the fraction of these high redshift
objects in our sample is too small to have measurable
effects on our results.

We calculate photometric redshifts for these catalogs
using two methods, a Neural Network (NN) method
and the χ2 based spectral template fitting package Hy-
perz (Bolzonella et al. 2000). The NN technique is a
training-set method based on fitting a parametrized func-
tion, represented by a feed-forward multilayer percep-
tron (FFMP) neural network, to the redshift-magnitude
relation embodied in a spectroscopic training set. The
implementation is the same as the one described in
Oyaizu et al. (2007) for the SDSS DR6 photo-z catalog,
except that the network configurations are different: here
we use a 4:15:15:15:1 network for the DES catalog and
a 5:15:15:15:1 network for the SDSS catalog. Figures 1
and 2 show the resulting photometric redshifts plotted
against spectroscopic redshifts for all catalogs used in
this study.

We split the DES and SDSS catalogs into three inde-
pendent catalogs each, labeled training, validation, and
photometric sets. The sizes of these sets are 50,000,
50,000, and 100,000 for the DES and 100,000, 92,964, and
100,000 for the SDSS. Except where noted below (§3.3),
these subsets are drawn at random from the photomet-
ric samples, i.e., they are each statistically representative
of the full samples. When the photo-z’s are determined
using the NN training-set method, we use the training
and validation sets to determine the mapping from mag-
nitudes to redshifts and magnitudes to redshift errors.
The resulting mapping is then applied to the photomet-
ric set for comparison of the training-set error estimator
against other error estimation methods. Splitting the
catalogs ensures that the training-set error methods are
not given unfair advantage with respect to the other er-
ror estimators. When we estimate photo-z’s and photo-z

errors using template methods, we apply the methods
directly to the photometric set.

3. ERROR ESTIMATES USING TRAINING SETS

Training set based photo-z estimators
(e.g., Connolly et al. 1995; Csabai et al. 2003;
Collister & Lahav 2004) use a spectroscopic train-
ing set, typically a subset of the photometric sample,
to derive a functional relation between redshift and
photometric observables (e.g., magnitudes) which is then
applied to the photometric sample of interest. In the
same spirit, we can also use a training set to derive an
estimate of the photo-z error, that is, a relation between
photo-z error and some photometric observables. Note
that the error estimator does not need to make use of
the same observables as the photo-z estimator. In fact,
we stress that the empirical photo-z error estimators are
independent of the method used to estimate photometric
redshifts themselves: training-set based error estimators
can be applied to either empirical (training set) or
template-based photo-z estimates. The assumption
underlying the training-set based error estimator is that
there is a functional relationship between some set of
photometric observables and photo-z error and that
this relationship for the training set data is reasonably
representative of the relationship for the photometric
sample as a whole.

In the following subsections, we describe and test two
basic techniques that use a spectroscopic training set to
estimate photo-z errors. Both techniques are based on
the simple observation that objects with similar magni-
tudes in a photometric survey tend to have similar pho-
tometric errors, and such magnitude errors are typically
the largest contributors to photometric redshift error.
Therefore, objects with similar multi-band magnitudes
will tend to have similar photo-z errors. Moreover, such
neighbors in magnitude space, having similar colors, usu-
ally (but not always) correspond to galaxies with simi-
lar SEDs. Photo-z errors depend strongly on SED type,
since the quality of photo-z estimates is related to the
presence of strong and broad spectral features. We can
therefore group objects in a spectroscopic training set ac-
cording to their magnitudes and determine the photo-z
error as a function of the magnitudes using the train-
ing set. For each object in the photometric set, we then
find the objects in the training set that are near it in
magnitude-space and associate some weighted mean of
the measured errors for these training-set neighbors to it.
The two methods introduced below differ in the method
of grouping the galaxies.

3.1. Kd-tree Error Estimator

The first photo-z error method we consider uses a Kd-
tree algorithm to bin training-set objects in magnitude
space. A Kd-tree (short for K-dimensional tree) is a gen-
eral data organization and classification algorithm that
is suited for efficiently partitioning data points in multi-
dimensional parameter spaces. In our implementation,
the training set is partitioned into two bins at the me-
dian value of the first photometric parameter (which we
choose to be u mag for SDSS, g for DES). For each bin,
the objects within the bin are further partitioned at the
median of the second parameter (here g for SDSS, r for
DES), resulting in 22 = 4 bins. This process is continued
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Fig. 3.— Upper panels: Estimated error vs empirical error for a) DES photometric set using Kd-tree error estimate, b) SDSS using
Kd-tree, c) DES using Nearest Neighbor error (NNE) estimate, and d) SDSS using NNE. In all four cases, the neural network method was
used to estimate the photo-z’s. Lower panels: Corresponding distributions of (zphot − zspec)/σest, where σest is the photo-z error estimate
for each galaxy. Solid histograms show the distributions, dashed curves are Gaussian fits to the distributions.

for the photometric parameters of interest (here the 5
magnitudes for SDSS and 4 for DES). We then return to
the first parameter, partition each bin at the median of
the first parameter for that bin, cycle again through the
parameters, and continue subdividing until the number
of objects in a bin becomes sufficiently small. Once the
partitioning is completed, we calculate the 68% width of
the error distribution centered about zphot − zspec = 0
for each bin and declare that to be the photo-z error
estimate for objects in the photometric sample that fall
within that bin.

Because the Kd-tree bins are always partitioned at the
median value of the object distribution in some param-
eter, the number of training-set objects per bin, Nb, is
nearly constant from bin to bin. This constancy ensures
a nearly uniform shot-noise uncertainty (∝ 1/

√
Nb) on

the estimates of the photo-z errors. While this statisti-
cal uncertainty is minimized by having many objects per
bin, large bins are “non-local” in multi-magnitude space,
and the training-set based error estimator is predicated
on the locality assumption that similar magnitudes im-
ply similar errors. Therefore, the optimal bin size should
be as small as possible (or smaller than the scale over
which the error distribution changes appreciably) but
large enough that the shot-noise error is not large com-
pared to the error induced by non-locality of the bin. For
the training set samples we consider here, we find that
Nb ≃ 100 objects per bin is nearly optimal. The size of
the training set can also change the locality of the near-
est Nb neighbors, and in general, the required locality
depends on the first derivative of the redshift-magnitude
relationship. Because such relationships are dependent
on numerous factors, such as filter choice, selection func-
tion, and magnitude errors, we cannot provide a general
requirement for the training set size. We note, however,
that in both DES mock and SDSS catalogs, we find vir-
tually no improvement in error estimator quality when

the training set size is larger than 20,000 galaxies.
Figures 3a and 3b show the results of applying the Kd-

tree error estimator to the DES and SDSS photometric
sets. In these cases, the neural network (NN) method
was used for the photo-z estimates. The photo-z errors
are estimated using a Kd-tree with 512 bins for the DES
catalog and 1024 bins for the SDSS catalog, correspond-
ing to Nb ≃ 97 training-set objects per bin in each case.
The top panels of Figure 3 show the photo-z error esti-
mates vs. the measured or “empirical” errors. In order
to compute the empirical error, we first sort the galax-
ies according to their estimated error. Next, we bin the
galaxies into bins of 100 objects starting from the galaxy
with the smallest estimated error, and call the average
estimated error of the galaxies within a bin the “esti-
mated error” of the bin, which is plotted on the vertical
axis of Figure 3. Finally, we compute the 68% width of
the |zphot − zspec|/σest distrubtion of each bin, and call
it the “empirical error” of the bin. The assumption here
is that if the error estimator is working properly, those
objects with similar estimated error should follow similar
underlying error distributions, and the underlying distri-
bution should have a width that is well-approximated by
the estimated error. As the figure shows, the estimated
Kd-tree error correlates well with the true error, with
almost no apparent bias and relatively small scatter.

The solid histograms in the lower panels of Fig-
ure 3 show the corresponding distributions of (zphot −
zspec)/σest, where σest is the Kd-tree error estimate. The
dashed curves in these panels show Gaussian fits to the
error distributions; we also indicate the best-fit Gaus-
sian means (µGauss) and standard deviations (σGauss) as
well as the σ68 widths (about zero) of the distributions
(not the fits). The fits give equal weight to each bin of
the distributions and ignore objects for which σest = 0.
There is no a priori reason for these error distributions
to be Gaussian. Nevertheless, for the Kd-tree error es-
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timator, the error distributions are very close to Gaus-
sians, except for small tails seen for both the DES and
SDSS catalogs. The tails are signatures of catastrophic
photo-z failures: due to photometric errors, an intrinsi-
cally underluminous, red galaxy at low redshift, for ex-
ample, may “scatter into” a bin mostly populated (in
the training set) by intrinsically luminous, blue galaxies
at much higher redshift. In such degenerate cases, the
photo-z error is large, and the Kd-tree error underesti-
mates the true error: in this example, the Kd-tree error
assigned to the red galaxy interloper would be dominated
by the small errors of the blue galaxies in that bin. With
a sufficiently large training set, one could hope to iden-
tify such problematic bins in magnitude space, since the
photo-z error distributions in the training set for those
bins would show anomalous tails.

A disadvantage of the Kd-tree method is the fact that
the estimated error is discrete. There can only be as
many different error estimates as there are Kd-tree bins,
and this limits the resolution of the estimated photo-z
errors, especially for objects with large photo-z errors
as seen by the lack of high Kd-tree estimated errors in
Figure 3. This problem can in principle be alleviated
by using more Kd-tree bins. However, as noted above,
for fixed training set size, the number of bins is limited
by the requirement that each bin should contain enough
training-set objects to determine the error with small
shot-noise uncertainty.

3.2. Nearest Neighbor Error estimator

While the Kd-tree error estimator was seen to have
good statistical properties, we have found that a Nearest
Neighbor Error (NNE) estimator performs even better.
Note that the NNE has in principle nothing to do with
Neural Networks (NN), and the readers should be care-
ful not to confuse the similar acronyms. In this method,
for each object in the photometric set, we estimate the
photo-z error by using the 68% spread of the error dis-
tribution of its Nnei nearest neighbors in the training
set. Here, nearness in magnitude space is defined using
the Euclidean metric: given two objects with two sets of
measured magnitudes m1 and m2, we define the distance
between them by

D2 = |m1 − m2|2 =

Nm
∑

µ=1

(mµ
1 − mµ

2 )2 , (1)

where Nm denotes the number of magnitudes (different
passbands) measured for each object. In contrast to the
Kd-tree method, in NNE each object in the photometric
set defines its own “bin.”

The choice of the number of nearest neighbors (Nnei)
to use is analogous to the choice of the number of bins in
the Kd-tree error estimate. We prefer to keep the number
of neighbors constant for all objects in the photometric
set, since the shot noise of the resulting error estimate
is then fixed. As with the Kd-tree method, one should
choose Nnei large enough to keep the shot noise of the
estimate under control but small enough so that the error
estimate remains relatively local in magnitude space. For
the samples we have tested in this analysis, we again find
that Nnei ≃ 100 training-set neighbors is nearly optimal.

The upper panels of Figures 3c and 3d show the re-
sults of applying the NNE estimation method to the DES

Fig. 4.— Left: Estimated Error vs. empirical error for NNE
applied to the DES catalog with Hyperz photo-z’s. Right: Error
distribution for the same data.

and SDSS catalogs. The discreteness that was a con-
cern for the Kd-tree error estimate is not present in the
NNE method. Moreover, the NNE error displays tighter
correlation with the empirical error, because a nearest-
neighbor bin for a photometric object is almost always
more local in magnitude space than a Kd-tree bin for
the same object. The lower panels of the same Figures
show that the error distributions are reasonably well fit
by Gaussians, with widths that are within 5% of the
expected width σGauss = 1. Non-Gaussian tails similar
to those seen in the Kd-tree error distributions are also
present in the NNE error distributions, for the same rea-
sons.

As noted above, the NNE and the Kd-tree error meth-
ods can be used in conjunction with any photo-z esti-
mator, either training-set or template-based, provided
there exists a subset of the photometric sample with
spectroscopic redshifts. As an illustration, we use the
Hyperz template fitting method to calculate photomet-
ric redshifts for the full DES mock catalog (shown in
the lower panel of Fig. 1). We then use 50,000 objects
from the DES catalog as a training set for NNE and
calculate photo-z errors for the remaining photometric
objects. Figure 4 shows the estimated vs. empirical er-
ror (left panel) and the error distribution (right panel)
for this example. The NNE error estimate works well,
though as before it results in an underestimate when the
errors are very large (∆z > 0.25). The error distribution
is not as well fit by a Gaussian in this case; this is not
surprising, since the photo-z estimate in this case has a
net bias of ∼ 23%. However, the error estimator is able
to account for the bias and is still able to predict the
error to within 12% in σGauss. This ability to include
the bias in the error estimates makes the training set
error estimate approach particularly powerful compared
to methods based on magnitude error propagation (see
§4.2).

In our implementation of the NNE, computation of the
NNE is expensive compared to the Kd-tree method. In
the naive implementation, computation time to find the
nearest objects scales as NTNP, where NT and NP are
the number of objects in the training set and the photo-
metric set, respectively (see, e.g., Press et al. 1992). In
contrast, the Kd-tree method scales as NP log NT. For
most training-set photo-z methods, including the Neural
Network, the computation time scales as NP. There-
fore, for a sizeable training set (NT ∼ 10, 000 objects),
the NNE computation dominates the time involved in
estimating the photo-z’s and their errors. Fortunately,



6

Fig. 5.— Top row: i-magnitude distribution for the Flat
and Extr non-representative training sets. The representative i-
magnitude distribution is plotted in dashed lines for comparison.
Bottom row: The Neural Network zphot vs zspec of the DES mock
photometric set calculated using DES Flat training set (left panel)
and DES Extr training set (right panel).

the method is trivially parallelizable, because the NNE
calculation of one object in the photometric set is inde-
pendent of all the other objects in the same set. Taking
advantage of this parallelization, the NNE estimator has
been successfully applied to a data set as large as the
SDSS DR6 (Adelman-McCarthy et al. 2007) containing
more than 78 million galaxies with Neural Net photo-
z’s.(Oyaizu et al. 2007). In addition, tree-structured
nearest neighbor search methods, such as the Cover-Tree
(Baygelzimer et al. 2006), can be used to improve the
computation time to O(NP log NT), essentially eliminat-
ing the difference between the Kd-tree and NNE meth-
ods.

3.3. Non-representative training set

The training-set based error estimators we have intro-
duced rely on the spectroscopic training set to character-
ize the errors of the photometric set. Hence, the quality
of the error estimate depends in principle on the degree
to which the training set is a representative subsample of
the photometric set. Since spectroscopic samples often
are not simply random subsets of the parent photometric
samples from which they are drawn, one might have con-
cerns about the robustness of these error estimates. Here,
we consider cases of non-representative training sets and
show that the training-set error estimators perform sat-
isfactorily provided the training set covers the full mag-
nitude range of the photometric sample.

In order to illustrate the issue, we have constructed
two non-representative training sets using the DES cata-
log generator. One training set (labelled Flat) has a flat
i-magnitude distribution at i < 24 instead of the increas-
ing distribution characteristic of a flux-limited sample;
bright (faint) objects are over- (under-)represented com-
pared to the photometric sample. The second training

Fig. 6.— Top row: NNE error vs empirical error calculated using
two non-representative training sets. Bottom row: Error residual
distributions.

set (labelled Extr) has an i-magnitude distribution highly
skewed to bright magnitudes, i < 22, since a spectro-
scopic set typically does not go as faint as the correspond-
ing photometric sample. Both training sets have flat red-
shift and SED type distributions, differing from those of
the fiducial DES mock catalog. The i-magnitude distri-
butions, as well as the zphot vs zspec plots, are shown in
Figure 5. Each training set contains 50,000 galaxies. We
used the training sets to derive Neural Network photo-z
solutions, which were then used to estimate photo-z’s for
the DES mock photometric catalog. Photo-z errors were
estimated using the NNE method, again using the same
non-representative training sets in each case. In Fig. 6,
we show the estimated vs. empirical error (top panels)
and the error distributions (bottom panels) for the two
cases. We see that the NNE error method estimates the
errors correctly at the ∼ 10% level while maintaining
Gaussianity in both cases. In the case of the Flat train-
ing set, the error accuracy degradation is less than 1%
compared to the representative training case. Given the
fact that the Neural Network photo-z quality is itself de-
graded by ∼ 10% compared to the representative case in
scatter, these results show that the NNE error estimator
is robust against differing distributions of the training
and photometric sets.

A possible approach to the issue of non-representative
training sets would be to resample or weight the training-
set objects to obtain a distribution that matches the dis-
tribution of photometric observables (magnitudes, colors,
etc.) of the photometric sample. In the case of the DES
catalog and the two non-representative training sets used
above, this resampling results in a marginal improvement
in the error estimate at the ∼ 2% level in both σ68 and
σGauss. We plan to offer further discussions and test
results in subsequent articles, currently in preparation
(Lima et al. 2008; Cunha et al. 2008).

4. COMPARISON WITH OTHER ERROR ESTIMATORS
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Fig. 7.— Left: χ2 estimated error vs empirical error for the DES
mock catalog, using the Hyperz photo-z estimator. Right: χ2 error
residual distribution, along with Gaussian fit. For the comparable
training-set error, see Fig. 4.

Other photo-z error estimators have been proposed
in the literature. Two commonly used estimators are
the χ2 error in template fitting methods, such as Hy-
perz (Bolzonella et al. 2000), and the propagation of
magnitude errors that is found in, for example, ANNz
(Collister & Lahav 2004). In this section, we discuss the
performance of these error estimators and consider the
advantages and disadvantages of our training-set based
error estimators compared to these methods.

4.1. χ2 error estimate

Template-fitting photo-z methods often use χ2 min-
imization to determine the best-fit zphot and spectral
type. The quantity to be minimized is

χ2 =

Nm
∑

k=1

[

F k
obs − a · F k

temp(z)

σk
F

]2

, (2)

where F k
obs is the observed flux in passband k, σk

F is the
corresponding uncertainty in the flux, F k

temp(z) is the flux
of a template SED redshifted to a given z, a is a normal-
ization factor, and Nm is the number of passbands in
which measurements are available. This statistic is min-
imized over redshift and over the set of template SEDs.

When a model being fit to data is linear in the fit pa-
rameters, the probability distribution for the χ2 statistic
is the chi-square probability distribution for ν degrees
of freedom, P (χ2|ν) (Press et al. 1992). Given the value
of χ2 = χ2

min that minimizes Eq. 2, the corresponding
P (χ2

min|ν) gives the probability that the observed χ2 for
a correct model should be less than χ2

min. This probabil-
ity can be used to calculate redshift confidence intervals.
Given a confidence level α (0 < α < 1), define the quan-
tity ∆χ2 such that (Avni 1976)

P (χ2 ≤ ∆χ2 |ν) = α. (3)

The level-α zphot confidence interval is given by the set
of all redshifts for which

χ2(z) − χ2
min ≤ ∆χ2 , (4)

where χ2(z) is minimized over spectral type and the co-
efficient a. That is, ∆χ2 is simply the increment in χ2

required to cover the region of parameter space with red-
shift confidence α. Here, we are interested in comparing
the 68% confidence interval of the photometric redshift,
so we set the parameter α = 0.68.

Fig. 8.— Left: MDE error vs empirical error for the DES mock
catalog, using the NN photo-z estimate. Right: Error residual dis-
tribution for MDE error for the DES mock catalog. For comparison
with the training-set error estimators, see Figs. 3a,c.

In Figure 7, we show the χ2-estimated error vs. empir-
ical error and the residual error distribution for the Hy-
perz photo-z estimator applied to the DES mock catalog.
The χ2 error underestimates the true error by about a
factor of two. Furthermore, the distribution of the er-
ror residual divided by the estimated error is decidedly
non-Gaussian, exhibiting strong tails. We attribute the
underestimate to the fact that the chi-square distribu-
tion is not a realistic description of the true photo-z er-
ror distribution, given the relatively strong degeneracies
present in the catalog. In a test using an artificial mock
catalog containing only early-type galaxies, in which the
degeneracy between redshift and galaxy SED type is re-
moved, we found that the χ2 estimator was accurate at
the ∼ 30% level. In addition, the model used in the χ2 er-
ror estimator assumes that the fitting function, F k

temp(z),
is linear in the fitting parameters, namely the redshift.
In reality, the template fitting functions are highly non-
linear, and therefore it is not surprising that the χ2 error
estimator does not robustly predict the correct errors.

We also tried to compute χ2 errors for Hyperz applied
to the SDSS catalog, but we were not able to obtain
sensible estimates. We found no discernible correlation
between the χ2 errors and the true errors of the photo-
z estimate. We discuss this issue further at the end of
section 4.2.

4.2. Error estimate from Magnitude Derivative (MDE)

The basic assumption underlying photo-z estimates is
that there is a one-to-one mapping from photometric ob-
servables, e.g., magnitudes, to redshift. In training-set
photo-z methods, this mapping is given by an explicit,
usually analytic, function of magnitudes mµ and fit co-
efficients ck,

zphot = zphot(ck, m
µ) , (5)

where the ck are determined from the spectroscopic train-
ing set by minimizing a score function, a measure of the
error residuals of the photo-z estimates. To first order,
we can propagate the coefficient errors σck

and the mag-
nitude errors σm to the photo-z errors σz as

σ2
z =

Nc
∑

k=1

(

∂zphot

∂ck

)2

σ2
ck

+

Nm
∑

µ=1

(

∂zphot

∂mµ

)2

σ2
mµ . (6)

If the training set is sufficiently large (say, ∼ 10, 000
objects), the photo-z errors due to errors in the model
fit coefficients are typically negligible compared to those
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arising from magnitude error propagation. Therefore we
will concentrate on the latter and define the Magnitude
Derivative error (MDE) as the second term in Eqn. 6
(Collister & Lahav 2004). For polynomial fitting and NN
photo-z methods, analytic expressions for the derivatives
(see, e.g., Bishop (1995) for the case of NN) can be used.
However, we may also calculate these derivatives by fi-
nite difference, in which case MDE can be applied to any
photo-z estimation method, including template fits.

Figure 8 shows the performance of the MDE error cal-
culation for the DES mock catalog using neural network
photo-z’s. MDE errors underestimate the true error by
approximately 40% for this case. Although the error
residuals are nearly Gaussian, the tails of the error distri-
bution are more pronounced than the tails for the NNE
error, signaling the failure of MDE to correctly identify
catastrophic photo-z errors.

Collister & Lahav (2004) identify a second source of
error in neural network photo-z’s: in the training pro-
cess, the score function typically has many local minima
with similar values. As a result, networks that start the
minimization process at different initial values for the fit
coefficients can end up in different local minima, resulting
in slightly different photo-z estimates for the same input
magnitudes. The variance in photo-z estimates due to
this effect is an additional contribution to the photo-z
error. By retraining our networks with different initial
conditions, we find that the contribution of such an effect
to the photo-z error is small (< 1% of MDE) for our two
catalogs, not enough to account for the underestimate of
the MDE errors when applied to neural network photo-z
estimates.

The χ2 and MDE error estimators are both predicated
on the accuracy of the quoted magnitude errors. How-
ever, photometric errors are often difficult to estimate
accurately (e.g., Scranton et al. 2005). The problem is
further exacerbated if the magnitude errors in different
passbands are correlated with each other, thereby violat-
ing the assumptions made in the χ2 fit and in magnitude
error propagation. Because of these difficulties, the MDE
errors applied to the NN photo-z estimates for the SDSS
catalog are only weakly correlated with the true errors,
similar to the case of χ2 error applied to the SDSS. A
key advantage of the training-set based error estimators
is that they do not depend on the measured magnitude
errors.

5. REDUCING CATASTROPHIC OUTLIERS: CULLING
OBJECTS BY ESTIMATED ERROR

In certain analyses, one would like to remove objects
with very erroneous, so called catastrophic, photo-z esti-
mates from a sample. If the estimated photo-z errors are
reliable, then objects with large estimated errors can be
used to identify catastrophic photo-z failures. Removing
such objects from a sample can reduce the scatter and
bias in photo-z estimates.

In this study, we define objects with catastrophic errors
as those for which |zphot−zspec| is large compared to the
photo-z scatter, σ. Specifically, we define catastrophic
errors to be |zphot − zspec| > 0.3 for the DES catalog
and |zphot − zspec| > 0.05 for the SDSS, corresponding to
approximately 2.5 times the scatter for the NN photo-z
estimate for each survey. We define the outlier fraction to
be the fraction of objects in a photometric sample with

Fig. 9.— Top: Reduction in photo-z scatter σ when objects with
large estimated photo-z errors are culled from the sample, using
two photo-z estimators, NN and Hyperz, and four error estimators,
NNE, Kd-tree, MDE, and χ2. Horizontal axis is the the fraction of
objects culled from the DES catalog. Bottom: Reduction in outlier
fraction when objects are culled by estimated photo-z error. For
the DES catalog, the outlier fraction is defined as the fraction of
objects with |zphot − zspec| > 0.3.

catastrophic errors. We sort the photometric catalogs
by the galaxies’ estimated photo-z errors and track the
changes in σ and in the outlier fraction as we successively
remove objects with smaller and smaller estimated error.

In Figure 9, we show the dependence of the photo-
z scatter, σ, and the outlier fraction on the fraction of
objects culled from the sample based on the estimated
error. We show results for the four different error estima-
tors described above (Kd-tree, NNE, χ2, and MDE) for
the DES mock catalog. We clearly see that the NNE and
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Fig. 10.— Same as Fig. 9, but for the SDSS catalog. Here the
outlier fraction is the fraction of objects with |zphot−zspec| > 0.05.

the MDE estimators perform the best in reducing scat-
ter and outliers, while the χ2 method fails to adequately
separate catastrophic photo-z’s from the well behaved
ones. Note that the relatively poor performance of the
χ2 method is not due to the fact that the Hyperz photo-z
scatter is larger: the NNE error estimate with the Hyperz
photo-z performs significantly better.

Figure 10 shows the photo-z scatter and outlier frac-
tion for the SDSS catalog. For this case, MDE and χ2

do not perform as well in reducing scatter and outliers.
These error estimators rely on the reported magnitude
errors, and as noted above the latter are highly corre-
lated between passbands and are non-Gaussian for the
SDSS catalog. In fact, culling objects with high χ2 error
results in no improvement of the scatter, a reflection of

Fig. 11.— zphot vs zspec for the DES catalog when the 10% of
the objects with largest estimated NNE error (NNE error larger
than 0.1648) have been removed. For comparison, see Figure 1.

the fact that the χ2 error for the SDSS catalog is not
correlated with the actual error of the Hyperz photo-z
estimates.

Figure 11 shows zphot vs. zspec for the DES catalog
with NN photo-z’s when 10% of the objects, those with
the largest estimated NNE errors, have been removed.
Comparing to the results in the upper panel of Fig. 1,
this process reduces the photo-z scatter in the remaining
objects by ∼ 23%. Moreover, most of the catastrophic
objects at low redshift are removed, improving the bias
and the scatter at those redshifts.

This procedure of removing catastrophic objects
changes the selection function of the sample, which in
turn changes the redshift distribution. When culling a
catalog using an estimated error, one should carefully
consider the effects of the reduced sample size as well
as the change in the selection function of the objects to
be analyzed. Recently, there has been promising work
showing that, for the DES mock catalog, the accuracy
of galaxy power spectrum measurement can be improved
by culling high estimated error galaxies using the MDE
estimator (Banerji et al., in prep). The study finds that
the improvement in the photo-z scatter outweighs the
reduced statistics of the resulting smaller sample of low
photo-z error galaxies.

6. CONCLUSIONS

In this paper, we have introduced a new approach to
estimating photometric redshift errors using a spectro-
scopic training set. We presented two implementations
of the training-set approach, Kd-tree and Nearest Neigh-
bor Error (NNE), and found that NNE is the best er-
ror estimator when a representative training set is avail-
able. Compared to the χ2 error and the MDE estima-
tors, training-set based error estimators are less sensitive
to systematic errors in magnitude error estimates. They
incorporate both the bias and scatter of the photo-z’s,
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important features given the often substantial biases in
photo-z estimates. Comparison of NNE and Kd-tree er-
rors with error estimators from the literature shows that
these training-set error estimators are in general more
accurate and better behaved (in the sense that the error
residual distribution is closer to a Gaussian).

Since a fully representative spectroscopic training set
is not always available, we explored the impact on these
error estimates of non-representative training sets. We
found that this does not substantially degrade the ac-
curacy of the training-set error estimates. In fact, we
showed that even for training sets with very different
magnitude and redshift distributions from the photomet-
ric sample, the training-set error estimates remain accu-
rate at the 10% level.

Finally, we demonstrated that one can cull galaxies
with large estimated errors from a sample and thereby
significantly improve the overall scatter and bias of the
photo-z estimates. Because the training-set error estima-
tors are more accurate than other error estimators, and
because the photo-z error residuals are nearly Gaussian
distributed for these methods, culling objects using NNE
or Kd-tree results in greater performance improvement
than culling with other error estimators.
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